

コンパクト アナログデータ ロガー LE-910R LE-918R

取扱説明書

最新の取扱説明書は、付属のCDに pdf ファイルで収録されています。

(第5版)

ご注意	
使用限定について	
必ずお読みください!!	2
適切にご利用いただくために	
第1章 ご使用の前に	4
1-1. 商品構成	
1-2. 製品概要	4
1-3. 仕様	5
1-4. 各部の説明	7
第2章 起動の前に	9
2-1. 動作環境	
2-2. USB ドライバのインストール	9
2-3. 測定ソフト(LE-LINK91)のインストール	
2-4. 無線 LAN(Wi-Fi)の設定	
第3章 基本的な設定	
3-1. 測定の準備	
3-2. 測定の設定	14
3-3. 測定の方法	
3-4. ログファイル	
第4章 測定ソフト	
4-1. 各部の説明	
4-2. グラフの見方	
4-3. ログファイルの読み込み	
第5章 便利な機能	
5-1. 外部信号をトリガーに使用した測定	
5-2. 同期測定モード	27
5-3. アナログトリガー機能	
5-4. ログファイル収集機能	
第6章 資料	
6-1. 制御コマンド	
6-2. ファームウェアの更新	
6-3. 出荷時の設定に戻すには	
6-4. オプション	
第7章 アフターサポート・保守	
7-1. 故障かなと思ったら	
7-2. 保証とアフターサービス	

<u>目次</u>

はじめに

このたびは LE シリーズをお買いあげいただき、誠にありがとうございます。 本機を正しくご利用いただくために、この取扱説明書をよくお読みください。 なお、この取扱説明書と保証書は、必ず保存してください。

ご注意

- 本書の内容の全部または一部を無断で転載あるいは複製することは、法令で別段の 定めがあるほか、禁じられています。
- 本書の内容および製品仕様について、改良などのため将来予告なく変更すること があります。
- 本書の内容につきましては万全を期して作成しておりますが、万一記載漏れや誤り、 理解しにくい内容など、お気づきの点がございましたらご連絡くださいますようお願い致します。
- 本機を使用したことによるお客様の損害、逸失利益、または第三者のいかなる請求につきましても、一切のその責任を負いかねます。また、本製品を使用中にデータなどが消失した場合や、記録したデータが壊れていた場合でも、データなどの保証は一切いたしかねますのであらかじめご了承ください。

使用限定について

本製品は計測機器として使用されることを目的に、開発製造されたものです。原子力設備 や機器、航空宇宙機器、医療機器、輸送設備や機器など故障や誤動作が人命に関わる 設備や機器、及び高度な信頼性を必要とする設備や機器と組み合わせて使用されること は意図されておらず、また保証していません。このような用途で使用される場合は、お客 様の責任においてフェールセーフなどの安全対策へのご配慮をいただくとともに当社営業 担当者までご相談ください。

本製品は無線 LAN 機能 (IEEE 802.11b/g/n)を搭載しており、稼動時に電波を利用します。 医療機器、電子レンジ、高精度な電子機器やテレビ・ラジオに隣接する場所、移動体認 識用の構内無線局および特定小電力無線局近くでは使用しないでください。管理者が無 線機器の使用を制限している場合では、管理者の指示に従って使用してください。

本製品のWi-Fi 接続機能は、日本国内でのみ利用いただけます。なお、本製品に搭載 のWi-Fi モジュールは、電波法に基づく小電力データ通信システムの無線局設備の工事 設計認証(TELEC 技適)を取得しており、本製品の利用にあたり、無線局の免許は必要 ありません。

安全のためのご注意

必ずお読みください!!

この「安全のためのご注意」には、対象製品をお使いになる方や、他の人への危害と財産 の損害を未然に防ぎ、安全に正しくお使いいただくために重要な内容を記載しています。 ご使用の前に、次の内容(表示・図記号)を理解し、記載事項をお守りいただき正しくお使 いください。

〔表示の説明(安全注意事項のランク)〕

警告
 誤った取り扱いをすると、人が死亡または重傷を負う可能性が想定される内容を示します。
 訳った取り扱いをすると、人が傷害 *1 を負うまたは物的損害 *2 が発生

- *1: 傷害とは、治療に入院や長期の通院を要さない、けが、やけど、感電などをさします。
- *2: 物的損傷とは、家屋、建築物、家具、装置機器、家畜、ペットにかかわる拡大損傷をさします。

警告

- ■本製品を分解したり、改造しないで下さい。 火災・感電・動作不良の原因となります。
- 煙が出たり、異臭、異音がする場合は、直ちに使用を中止してください。 そのまま使用すると火傷や火災、感電の危険があります。
- 水などで濡らさないでください。
 発熱、感電、故障の原因となります。
- ■コネクタのピンは絶対にショートさせないでください。 発熱、感電、故障、けがの原因となります。
- ■劣化(破損など)したケーブル類は使用しないでください。 発熱し、出火する危険があります。

[⚠ 注意]

■本製品は以下のような場所で使用もしくは、保管しないでしないで下さい。

- 直射日光の当たる場所。
- 使用範囲を超える温湿度や、急激な温度変化の激しい場所。
- 水気や埃が多い場所。
- 熱を発生するものの近く。(ヒーター、電熱器、ストーブなど) 故障やけがの原因となります。

適切にご利用いただくために

■ 電波法における注意点

本機は日本の電波法の認証を取得しています。 電波法の「小電力データ通信シス テムの無線局の無線設備」にあたるので、無線免許は必要ありませんが、以下の 点に注意してください。

- 内部回路やファームウェアを改造することは法律で禁止されています。
- 各国の電波法の認証が必要なため、海外ではご利用になれません。
- 無線 LAN 規格について

本機は 2.4GHz 帯を利用する IEEE802.11b/g/n の無線規格に対応しています。

■ 無線 LAN 規格について

無線接続不良や速度低下を避けるため、次の点にご注意ください。

- 移動体識別用の構内無線局やアマチュア無線局の近くで運用しない。
- 大きな金属板の近くに設置しない。
- 電子レンジやセキュリティゲートの近くに設置しない。
- 本機同士および無線端末とは1~3m 以上の間隔を空けて設置する。

■ ネットワーク環境の確認

IP アドレスなどの設定が不適切な機器をネットワークに接続すると、ネットワーク全体に影響がでる可能性があります。

必ず、事前に、本機を設置するネットワークの管理者に、以下の内容を確認してメモ しておいてください。

1

□ IP アドレス ·····	[]
□ サブネットマスク ・・・・・	[]
□ デフォルトゲートウェイ ・・・・	[]

利用する無線アクセスポイント(AP)

- □ SSID·····[
- □ 暗号化方式 ·······(□ WEP、□ WPA、□ 802.11i/WPA2)
- □ 暗号キー ・・・・・[
- □ 利用チャンネル ·····[]ch (1ch ~ 14ch)

LE-910R シリーズは単独駆動、PC 接続の2通りで利用できる精密アナログ入力計測器です。USB また は無線 LAN (Wi-Fi) で PCと接続して測定データをグラフ表示しながら記録することができます。 測定データは本体の SD カードにも保存できるので、PC レスで長期測定にも利用できます。 なお、SD カードは弊社指定品のご利用を推奨します。 →「6-2. オプション」

1-1. 商品構成

開梱の際は、下記のものがそろっているかご確認ください。 本体 : 1 台 ミニ USB ケーブル 1.8m : 1 本 ユーティリティ CD : 1 枚 取扱説明書(本冊子) : 1 部 保証書 : 1 通

※ 万一、輸送中の損傷や不足品がございましたら、お買い上げの販売店または当社までご連絡ください。

☆ 箱は大切に保管し、修理などの輸送の時にご利用下さい。

ユーティリティ CD について

測定ソフト、ドライバ、計測器本体およびオプションの取扱説明書などが、収録されています。 弊社製品ソフトウェアのアップデートファイルは、https://www.lineeye.cojp からダウンロードできます。

1-2. 製品概要

■ 測定機能

本体測定記録

測定データを本体に挿入された SD カードへ長時間記録できる機能です。

② PC 測定記録 PC に接続して測定ソフトでグラフ表示しながら記録できる機能です。 PC 接続時も測定データを本体の SD カードに記録できます。

■ 特徴

- アナログ測定は電圧、電流、熱電対に対応し、高精度に測定可能
- ・ 熱電対は JIS 規格 (K, J, T, E, N, R, S, B) に対応
- ・ 測定は PC レスで SD カードに長期の記録が可能
- 測定データはタイムスタンプと一緒に記録可能
- ・外部トリガー端子に入力される信号の立ち下がり/立ち上がりのタイミングでアナログ値を測定し記録するトリガー機能^{**1}
- ・外部トリガー端子を利用して複数台の計測器による同期測定が可能^{※1}
- ・パソコン上でリアルタイムに測定データをグラフ表示できる測定ソフトをご用意
- ・ 無線 LAN (Wi-Fi) 接続に対応
- · 35mmDIN レール取り付けにも対応できる手のひらサイズの小型筐体

※1: LE-910R のみ

1-3. 仕様

■ アナログ入力仕様

	· · · · · ·					
	LE-910R			LE-918R		
アナログスカ回欧	シングルエンドアナログ入力 5 点			シングルエンドアナログ入力 8 点		
	(シグマデルタ型 ADC)			(シグマデルタ型 ADC)		
	電圧: ±	\pm 100mV, \pm 1V, \pm	$10V, \pm 30V$			
入力レンジ*1	電流:0	~ 20mA				
	温度 : 熱電対 K, J, T, E, N, R, S, B タイプ					
1) 47 AF	電圧レン	·ジ:24bit				
2017所有尼	電流レン	·ジ:23bit				
	1	± 30V レンジ:±	(0.05% rdg + 3	mV)		
	 *2	± 10V レンジ:± (0.05% rdg + 2mV)				
	電止***	± 1V レンジ:±(0.05% rdg + 0.2	2mV)		
		± 100mV レンジ:	\pm (0.05% rdg	+ 50 μ V)		
	雷流*2	0-20mA + 0.05% FS				
			-50°C∼ 1370	°C: ± (0.05% rdg + 1.0°C)		
		Κ タイプ	-200°C~ -50	${}^{0}C \cdot \pm (0.05\% rdg + 2.0\% C)$		
			-50°C~ 1200	$^{10}C : \pm (0.05\% rdg \pm 0.8\% C)$		
測定確度		J タイプ	-210°C~ -50	$1^{\circ}C_{\circ} \pm (0.05\% \text{ rdg} \pm 1.6^{\circ}C_{\circ})$		
			-50°C~ 400°	$C : \pm (0.05\% rdg + 1.0^{\circ}C)$		
		Τ タイプ	-200°C~ -50	10° $\pm (0.05\% \text{ rdg} \pm 3.0^{\circ}\text{C})$		
		E タイプ N タイプ	-E0°C - 1000	1° $(0.05\% \text{ rdg} + 0.6^{\circ} \text{C})$		
	泪 庄 ※3		-30°C~ -50°	$1^{\circ}C : \pm (0.05\% \text{ rdg} \pm 1.2^{\circ}C)$		
	温度		200 C	$100 \pm (0.05\% \text{ rdg} + 1.2 \text{ C})$		
			-30 Cro 1300	$1^{\circ}C : \pm (0.05\% \text{ rdg} \pm 1.5 \text{ C})$		
			200 0.1 30			
		R/S タイプ	400 C~ 1760	$1 C : \pm (0.05\% \text{ rdg} + 3.5 C)$		
			0 C ~ 400 C			
		Β タイプ	800 C~ 1800	$C : \pm (0.05\% \text{ rdg} + 4.0 \text{ C})$		
			400 C~ 800	C: ± (0.05% rdg + 7.5 C)		
			± 1.0°C			
テータ更新周期***	27.7 ~	527.5m 秒 / チャン>	ネル	44.3 ~ 844m 秒 / チャンネル		
入力インビーダンス	1M Ω					
チャンネル間絶縁	350V (A	Cビーク /DC)フォ	- MOS FET U	レー絶縁		
入力端子台	ヨーロピ	アン端子台 5.08m	m ピッチ 10 極	着脱式 3.81mm ピッチ 8 極×2		
	単線 φ 2.06 ~φ 0.51mm			単線 φ 1.29 ~ φ 0.32mm		
	(AWG24 ~ 12)			(AWG24 ~ 12)		
適合電線	より線 3.31 ~ 0.21mm²			より線 1.31 ~ 0.08mm ²		
	(AWG24 ~ 12) * 5			(AWG28 ~ 16) * 5		
	電線被覆剥きしろ 5mm			電線被覆剥きしろ 6mm		
締め付け	0.5 ~ 0.6 Nm			0.2Nm		
外部トリガー入出力	外部サン	_ノ プルトリガー、同	期測定モード			
端子	で使用			_		

- ※1: ± 50V 以上の電圧を印加しないでください。0~20mA レンジは入力端子台に電流測定用抵抗 (250 Ω または 50 Ω, 精度± 0.1%以下)の外付けが必要です。
- ※2:周囲温度0~35℃の確度です。全動作温度範囲での確度は、±30V/±10Vレンジが± (0.1%rdg+3mV)、±1Vレンジは±(0.1%rdg+0.3mV)、±100mVレンジは±(0.1%rdg+70 µ V)、 0-20mA電流レンジは±0.1% FS になります。なお、rdg は読取値に対することを、FS はフルス ケールに対することを表します。 電流の確度は外付け抵抗の誤差を含みません。
- ※3:周囲温度18~28℃、電源投入20分後以降の精度です、熱電対の誤差を含みません。 上記の周囲温度範囲を超過する場合、1℃ごとに各誤差数値の1/20を加算します。 また、直射日光下など本機の一部が局所的に加熱・冷却される環境においては、冷接点補償 精度を保証できません。
- ※4:温度測定時、最大 1.0 m 秒 / チャンネルが加算されます。
- ※5:より線の時は棒端子を使用してください。

■ 基本仕様

USB2.0 ポート	ミニ Β コネクタ
Wi−Fi 接続 ^{※1}	IEEE 802.11 b/g/n
	周波数レンジ: 2400MHz - 2483.5MHz
	送信パワー : 802.11b +20dBm, 802.11g +17dBm, 802.11n +14dBm
保存メディア	SD, SDHC カード (最大 32G バイト)
保存ファイル	CSV 形式,1ファイル当たり 最大約 200M バイト
電源 ^{※2}	USB バスパワー動作
	外部 DC 電源(定格入力:DC 8 ~ 30 V)
	消費電力 1.8W
温湿度条件	動作時:−10~ 50℃、保存時:−20~ 60℃
	湿度: 10~85%RH(結露なきこと)
外形寸法・質量	約 86(W) × 103(D) × 30(H)mm
	約 170g
取り付け方法	据え置き、DIN レール取付 ^{※ 3}

※1:本製品の Wi-Fi 接続機能は、日本国内でのみ利用いただけます。

Wi-Fi 接続機能をオフにすれば、Wi-Fi 電波は出ませんが、海外での利用で電波法規が問題とな る場合には、事前に弊社営業部までご相談下さい。

※2:AC アダプタは付属しません。USB 接続での測定(PC 接続)では USB バスパワーで駆動します。 無線 LAN (Wi-Fi) 接続、単独駆動での使用時は、別売りの AC アダプタ(6A-181WP09)が使用 できます。

※3:オプションの取付プレートが必要です。

No.	名称	説明
1	入力端子台**1	アナログ信号の入力端子です。 LE-910R:着脱式 5.08mmピッチ 10 極 LE-918R:着脱式 3.81mmピッチ8 極 ×2
2	外部トリガー入出力端子	外部入力信号をトリガーにして測定したり、同期測定するための 同期信号を入出力します。
3	DC ジャック	単独で測定する時には、ここより電源供給をしてください。
4	USB コネクタ ^{※ 2}	ホスト PC と付属のミニ USB ケーブルで接続します。
5	SD カードスロット ^{※ 2}	測定データを記録する SD カードを挿入します。取り出す時は SD カードを軽く押し込み、離すと飛び出します。
6	RUN/STOP スイッチ	測定動作を開始します。測定動作中に押すと測定を停止します。
Ø	M3 ネジ穴	オプションの DIN レール取り付けプレートを固定するネジ穴です。 穴ピッチ 70mm、ネジ深さ 3.5mm(Max.)
8	LINK/Wi-Fi LED	測定ソフトとの接続状態と Wi-Fi の状態を表示します。
9	PC/SD LED	測定の動作状態と SD カードのアクセス状態を表示します。
10	POWER LED	電源や本機の動作状態を表示します。

※1:取り外すときは、矢印の方向に、こじらずに真っ直ぐに引き抜いてください。

※2: SD カードスロットと USB コネクタは防塵キャップを装備しています。

SD カードを交換するときは下図のよう に下から開けます。 USB コネクタ側だけを下図のように開 けることも出来ます。

図の向きに SD カードをセットします。取り出す時は SD カードを軽く押し込み、離すと飛び出します。

■ LED 表示

各 LED の点灯で動作状態を表します。

LINK/Wi-Fi LED

計測器と測定ソフトが USB で接続確立すると緑、無線 LAN (Wi-Fi)で接続確立すると橙で点灯します。 無線 LAN (Wi-Fi) の接続設定中は赤で点滅し、使用可能な状態になると赤の点灯に変わります。

点灯状態		動作状態			
緑	点灯	USB 接続で測定ソフトと接続中			
橙	点灯	Wi-Fi 接続で測定ソフトと接続中			
赤	点灯	Wi−Fi 使用可能			
	点滅	Wi-Fi 設定中			
消灯		Wi-Fi 及び USB 切断中			

· PC/SD LED

測定ソフトで測定中は緑で点灯、SD カードに記録中は赤で点灯します。両方が点灯状態になると 橙になり、すべての測定が停止しているときは消灯します。

無線LAN(Wi-Fi)設定ファイルの読込などでSDカードにアクセスしているときも赤で点灯します。 SDカードのアクセスでエラーが発生した場合は赤で点滅します。点滅中にSDカードを抜き取ることでエラー状態が解除されます。

点灯状態		動作状態		
緑	点灯	測定ソフトで測定中		
橙	点灯	測定ソフトで測定しながら、 本体 SD カードへ記録中		
±	点灯	本体 SD カードアクセス中(記録中、設定ファイル読込み中)		
亦	点滅	本体 SD カードアクセス異常発生中		
消灯		全ての測定が停止中		

· POWER LED

電源が投入されている場合に点灯します。

同期モードがマスターで設定されているとき赤で点灯します。スレーブ時は橙で点灯します。 電源投入時に本体に異常があった場合に赤で点滅します。この状態のとき通常動作は停止します。

点灯状態		動作状態					
緑	点灯	電源 ON					
橙	点灯	スレーブとして同期モード動作中					
点灯		マスターとして同期モード動作中					
小	点滅	本体異常発生中					
消灯		電源 OFF					

本機でアナログ測定する PC には USB ドライバーと測定ソフトのインストールが必要です。

2-	1	動作環境
_		

PC	
OS	: Windows10/11
ポート	: USB2.0 ポートが必要
HDD	: 測定データを保存するための空き容量が必要
SD カードドライブ	: ログファイルの読み込みや Wi-Fi 設定ファイルの保存に必要
無線 LAN(Wi-Fi)	: 無線 LAN (Wi-Fi) 機能利用時は IEEE 802.11b/g/n(2.4GHz 帯) に対応した
	PC やアクセスポイントが必要

■電源の供給

本機とPCを付属のミニ USB ケーブルで接続した場合はバスパワーで動作します。 無線 LAN (Wi-Fi) 接続、単独での使用時には USB ケーブルで接続する代わりに AC アダプタを使 用することもできます。

2-2. USB ドライバのインストール

初めて本機を PC に接続した場合は、PC に USB ドライバをインストールする必要があります。インストールは次の手順で進めてください。

他の Windows でもほぼ同様の手順ですので、本手順を参考にインストールをお願いします。

■ Windows 10 の場合

- 1. 付属 CD をインストールする PC の CD-ROM ドライブにセットします。
- 2. CD 内の "Drivers" フォルダ内の setup.exe を実行します。
- 3.「ユーザーアカウント制御」ウィンドウが表示された場合、「はい」をクリックします。
- 4.「LINEEYE ドライバパッケージインストーラー」ウィンドウが起動しますので、「OK」をクリックします。

LINEEYE ドライバーパッケージインストーラー	×
LINEEYEシリーズ USBドライバーパッケージをインストールします。	
OK キャンセル	

- 5. インストールウィザードが起動しますので「次へ」をクリックします。
- インストールが完了すると「デバイスドライバのインストールウィザードの完了」と表示されます。
 「完了」をクリックします。

デバイス ドライバのインストール ウィザード			
	テバイストライバのイン	ストール ウィザードの完了	
	ドライバは、正しくこのコンピュータにインストールされました。		
- set	合は、裏物に説明書をお読みく		
	ドライバ名	状態	
	VINEEYE CO, LTD. CD	使用できます	
	V LINEEYE CO, LTD. CD	使用できます	
	< 戻る()	8 完了 キャンセル	

2-3. 測定ソフト(LE-LINK91)のインストール

本機を PC と接続して測定を行うには測定ソフト「LE-LINK91」を使用します。測定データをグラフ表示し ながらログファイルとして保存できます。測定に必要な本体設定も「LE-LINK91」を使用します。

■インストール手順

インストーラはありませんので、次の手順で付属 CD からコピーして使用してください。 1. 付属 CD をインストールする PC の CD-ROM ドライブにセットします。 2. CD 内の "LE-LINK91" フォルダごと PC にコピーします。 3. コピーした "LE-LINK91" フォルダ内の LE-LINK91.exe を実行すると起動します。 ※アンインストールするにはコピーしたフォルダごと削除してください。

2-4. 無線 LAN (Wi-Fi) の設定

計測器の無線 LAN(Wi-Fi)機能を利用する場合、「LE 無線 LAN 設定」ソフトにて無線 LAN 設定ファイル (WLANCFG.WL)を作成する必要があります。設定ファイルが書き込まれた SD カードを本体に挿入する ことで Wi-Fi の設定を行います。

注意 IP アドレスの設定はご利用になるネットワークの管理者にご確認の上、設定してください。

■無線 LAN 設定ファイルの作成

- I.FLE 無線 LAN 設定」ソフトを起動します。
 ※ PC にコピーした測定ソフト(LE-LINK91)のフォルダ内にある lewlancfg.exe を実行すると起動します。
- ステーション」または「アクセスポイント」を選択し、必要な項目を設定します。
 (無線 LAN(Wi-Fi) 機能を無効にする場合は「オフ」を選択します)

<ステーション>

外部 Wi-Fi(無線 LAN) アクセスポイントを経由して接続します。

🖪 無線LAN設定ファ	イル		-	□ X
無線LANモード(W) ○オフ ④)	ステーション 〇) アクセスポイント		バージョン: 1.00
SSID(S): パスワード(P):				
IPアドレス(I): サブネットマスク(M):	192 . 168 . 255 . 255 .	44 . 44 255 . 0		
ゲートウェイ(G): ポート番号(P):	192 . 168 . 10101	44 . 1		
		鷽Ҳ(0)	保存(A)	終了(X)

SSID	接続するアクセスポイントの SSID を設定します。
パスワード	アクセスポイントのパスワードを設定します。
IP アドレス	計測器の IP アドレスを設定します。
サブネットマスク	計測器のサブネットマスクを設定します。
ゲートウェイ	ゲートウェイを利用する場合には、ゲートウェイの IP アドレ
	スを設定します。
ポート番号	計測器のデータポートを設定します。

<アクセスポイント>

計測器が Wi-Fi(無線 LAN) アクセスポイントとなって接続します。

🖪 無線LAN設定フ	71N	-	□ ×
無線LANモード(W 〇オフ 〇) ノステーション ④ アクセスポイント		バージョン: 1.00
SSID(S): パスワード(P): チャンネル(C):	6		
IPアドレス:	192 . 168 . 4 . 1		
ポート番号(P):	10101 開入(0) 保	存(A)	終了(X)

SSID	計測器の SSID を設定します。
パスワード	計測器のパスワードを設定します。
チャンネル	Wi-Fi 接続で使用するチャンネルを設定します。
IP アドレス	計測器の IP アドレスで 192.168.4.1 に固定されています。
ポート番号	計測器のデータポートを設定します。

※ アクセスポイントモードでは、計測器の DHCP サーバー機能が有効になっています。 PC のネットワーク設定にて、「IP アドレスを自動的に取得する」をご利用いただけます。

3.「保存」を押します。

保存した無線 LAN 設定ファイル(WLANCFG.WL)は SD カードの "LE-9XX" フォルダ直下に配置 してください。"LE-9XX" フォルダが存在しない場合、計測器に SD カードを挿入して電源を入れる と作成されます。

- 4. 計測器に無線LAN設定ファイル(WLANCFG.WL)の保存されたSDカードをセットします。 自動的に無線LAN(Wi-Fi)機能が動作し、ステーションモードではアクセスポイントに接続します。 無線LAN(Wi-Fi)が設定済みの場合は新しい設定に更新されるため一度切断されます。 設定情報は本体に記録されるので、次回の電源投入時にも同じ設定で接続を行います。
- ※ SD カードに書き込まれた無線 LAN 設定ファイルは本体が読み込んだ後は「WLANCFG.WL」から アンダーバーを加えた「WLANCFG.WL」にリネームされ、2 回目以降は読み込まないようになります。
- ※ Wi-Fi LED が赤で点灯しているとき、無線 LAN (Wi-Fi) が使用可能な状態です。ステーションモー ドでは点滅したあと、アクセスポイントに接続完了すると点灯します。
- ※ 無線 LAN(Wi-Fi)を使用して計測中は本体へ記録のみ行い、現在の無線 LAN 接続を維持します。 次回の電源投入時に新しい設定が適用されます。

■無線 LAN 設定の消去

本体に記録されている無線 LAN 設定は次の方法で消去することができます。

<方法1>

無線 LAN モードが OFF に設定された無線 LAN 設定ファイルを本体に読み込ませてください。

<方法2>

本体の電源を入れて RUN/STOP スイッチを 10 秒間押してください。Wi-Fi LED が早い赤点滅をし たあとスイッチを離すと無線 LAN 設定情報が消去されます。

3-1. 測定の準備

測定を開始する前に計測器の準備が必要です。測定方法に合わせて準備してください。

■ 測定ソフト(LE-LINK91)で測定する場合

LE-LINK91 がインストールされた PC に USB または無線 LAN で接続します。本体に SD カードが挿 入されている場合は測定ソフトで記録しながら本体の SD カードへ記録することもできます。

< USB 接続>

付属のミニ USB ケーブルで PC と接続します。バスパワーで動作するので DC ジャックに AC アダ プタを接続する必要はありません。

<無線 LAN(Wi-Fi)接続>

予め本体に無線 LAN 設定をする必要があります。→「2-4. 無線 LAN (Wi-Fi) の設定」 DC ジャックに AC アダプタを接続します。 (ミニ USB ケーブルで給電して動作させることもできます)

■ 本体のみで測定する場合

測定に必要な設定を LE-LINK91 で予め設定しておく必要があります。→「3-2.測定の設定」 本体に SD カード挿入し、DC ジャックに AC アダプタを接続します。 (ミニ USB ケーブルで給電して動作させることもできます)

■ 測定対象との配線

測定対象を端子台に配線してください。 配線および端子台の着脱は、必ず電源を OFF にしてから行ってください。

端子台の信号配列		の信号配列	入力部の回路構成		
端	子	記号	入力構成		
LE-	LE-				
910R	918R				
1	1	AI1 +	アナログ入力1		
2	2	AI1 -	アナログ入力1グランド		
3	3	AI2 +	アナログ入力2		
4	4	AI2 -	アナログ入力 2 グランド	2,4,6,8,10	
5	5	AI3 +	アナログ入力3	<i>₹</i> ∧.	
6	6	AI3 -	アナログ入力3グランド		
7	7	AI4 +	アナログ入力4	※ チャンネル毎にあるフォト MOS FET リレーは、	
8	8	AI4 -	アナログ入力 4 グランド	同時にオンしないように自動制御されています。	
9	1	AI5 +	アナログ入力5		
10	2	AI5 -	アナログ入力 5 グランド		
-	3	AI6 +	アナログ入力6		
-	4	AI6 -	アナログ入力 6 グランド		
-	5	AI7 +	アナログ入力7		
-	6	AI7 -	アナログ入力 7 グランド		
-	7	AI8 +	アナログ入力8		
-	8	AI8 -	アナログ入力 8 グランド		

以下の接続例を参考にして、配線を端子台に接続してください。端子台に配線するときは、端子台 のネジを規定トルク(LE-910Rは0.5 ~ 0.6Nm、LE-918Rは0.2Nm)で確実に締めてください。端子 には極性がありますので注意して接続してください。

測定を開始する前に計測器の測定設定を測定対象に合わせる必要があります。 測定に必要な設定は「LE-LINK91」から行うので、USB または無線 LAN(Wi-Fi)で接続できる よう予め準備してください。→「3-1.測定の準備」

■ LE-LINK91 との接続手順

1. LE-LINK91 を起動します。

 メイン画面の「接続設定」をクリックすると、接続設定ダイアログが表示されます。 設定項目の詳細は「4-1.各部の説明の接続設定」を参照してください。 接続方法を選択し、必要な設定をしたら「OK」をクリックします。

< USB 接続>

接続方法に「USB」を選択します。

シリアルポートの一覧から LE-910R シリーズが接続されている COM ポートを選択します。

<無線LAN (Wi-Fi) 接続> 接続方法に「Wi-Fi)を選択します。 IP アドレスとポート番号は LE-910R シリーズに設定したものと同じものを入力します。 ※ LE-LINK91 をご利用になる PC が無線 LAN ネットワークに接続されている必要があります。

3.メイン画面の「接続」をクリックします。

接続できるとステータスバーに「接続中」と表示されます。 接続に失敗する場合は接続設定を見直してください。

USB接続(接続中)	停止中
------------	-----

■ LE-LINK91 との切断手順

メイン画面の「切断」をクリックすると切断され、ステータスバーに「未接続」と表示されます。

USB接続(未接続)	停止中
------------	-----

測定の終了や、測定設定の変更後にLE-LINK91を終了するときは必ず切断してください。

- ■測定設定の手順
 - メイン画面の「測定設定」をクリックすると、測定設定ダイアログが表示されます。
 設定項目の詳細は「4-1.各部の説明の測定設定」を参照してください。
 ※「測定設定」は計測器と接続中のみクリックできます。
 - 2. ツリーメニューから「測定設定」を選択し、測定間隔など必要な設定をします。
 - 3. ツリーメニューから「チャンネル設定」(Al1 ~ 8)を選択し、測定対象の出力に合わせて各チャン ネルのレンジなどを設定します。
 - 4. 設定が完了したら「適用」をクリックすることで、本体に設定内容が反映されます。「キャンセル」クリックすると変更した設定が破棄されます。
 ※ 設定は本体に保存されるので電源をオフにしても次回の電源オン時も同じ設定で動作します。

■ 内蔵時計について

計測器本体には測定時刻を記録するための時計を内蔵しています。 LE-910Rは時計機能を維持するためのリチウム2次電池が内蔵されています。この電池は本機へ の給電時に充電され、3時間の充電で電源が切れても約1ヶ月間本機の時計を動かすことができます。 LE-918Rはリチウム1次電池が内蔵されており、約10年間本機の時計を動かすことができます。

本体をはじめて使うときや、しばらく電源が接続されていなかったときは内蔵時計が初期化されている ことがあります。その場合は本体の時計を設定しなおしてください。 設定方法の詳細は「4-1.各部の説明の測定設定」を参照してください。

3-3. 測定の方法

測定の設定ができたら測定を開始します。

- 測定ソフト(LE-LINK91)で測定する場合
 - 測定の開始方法

LE-LINK91 または本体を操作することで測定が開始し、ステータスバーに「測定中」と表示されま す。本体の PC/SD LED は緑または橙で点灯します。

測定中は経過時間とともにグラフが更新され、測定値をログファイルに記録します。

< LE-LINK91 を操作する場合>

メイン画面の「測定開始」をクリックすると測定が開始します。本体に SD カードが挿入されてい る場合は SD カードの記録を同時に開始します。

※「測定開始」は計測器と接続中のみクリックできます。

※本体 SD カードの記録も同時に開始するには設定が有効になっている必要があります。 設定方法は「4-1. 各部の説明のログ設定」を参照してください。

<本体を操作する場合>

本体の RUN/STOP スイッチを押すと測定を開始します。本体に SD カードが挿入されている場合 は SD カードの記録を同時に開始します。

※本体で操作した場合は SD カードの記録も必ず開始します。

測定の停止方法

LE-LINK91 または本体を操作することで測定が停止します。グラフの更新を停止し、ステータスパー に「停止中」と表示されます。本体の PC/SD LED は消灯するか、本体 SD カードの記録が継続 しているときは赤で点灯します。

< LE-LINK91 を操作する場合>

メイン画面の「測定停止」をクリックすると測定が停止します。本体 SD カードに記録している場合には SD カードへの記録停止の確認メッセージが表示されます。停止を選択した場合は SD カードの記録を同時に停止します。

※「測定停止」は測定中のみクリックできます。

<本体を操作する場合>

本体の RUN/STOP スイッチを押すと測定が停止します。本体 SD カードへ記録している場合に は SD カードの記録を同時に停止します。

※本体で操作した場合は確認なくSDカードの記録を必ず停止します。

- 本体のみで測定する場合
 - 測定の開始方法

本体の RUN/STOP スイッチを押すと本体の SD カードへの記録を開始し、PC/SD LED が赤で点 灯します。本体に SD カードが挿入されていないときは開始しません。

<u>測定の停止方法</u>

本体の RUN/STOP スイッチを押すと本体の SD カードへの記録を停止し、PC/SD LED が消灯します。

注意

SD カードを本機から取り出す時は、必ず PC/SD LED が消灯または緑点灯している時に行っ てください。アクセス中に SD カード取り出すと、カードの管理エリアが壊れ、ログファイルだ けでなくカードそのものが使えなく可能性があります。 測定したデータはログファイルとして CSV 形式で保存されます。 ログファイルの先頭には測定設定などが出力されます。 AI1 ~ 8 の測定データはシーケンス番号、タイムスタンプと一緒に出力され、タイムスタンプの時間は 1/100 秒単位まで出力されます。 アウマニートはされます。

測定データは有効数字6桁で出力され、熱電対のみ0.1℃単位となります。また、断線検知を有効に している場合、断線時は「BO」が出力されます。

	A	В	С	D	E	F	G	н	
1	LINEEYE L	E-91 OR (S/N,###	KKKKK F/W VI	ersion:1.01)					
2	ADC SPS	10[sps]							
3	測定周期	500[msec]							
4	AI	レンジ	単位	名前					
5	AJ1	±100[mV]	mV	電圧1 00mVL	ヘンジ				
6	AJ2	±1[V]	V	電圧1 Vレンシ	,				
7	AI3	±10[V]	V	電圧10Vレン	2				
8	AI4	±30[V]	v	電圧30Vレン	9				
9	AI5	0-20[mA](250Ω)	mA	電流					
10	No	日付	時間	Al1	AI2	AIS	AI4	AI5	
11	1	2019/9/25	17:15:48.00	35.436	-0.84262	6.7292	21.6056	11.7784	
12	2	2019/9/25	17:15:48.50	35.009	-0.84210	6.7071	21.6008	11.7644	
13	3	2019/9/25	17:15:49.00	35.867	-0.84618	6.7258	21.6031	11.7021	
14	4	2019/9/25	17:15:49.50	35.254	-0.84201	6.7074	21.6055	11.7510	
15	5	2019/9/25	17:15:50.00	35.429	-0.84128	6.7431	21.6089	11.7637	
16	6	2019/9/25	17:15:50.50	35.403	-0.84110	6.7162	21.6079	11.7178	
17	7	2019/9/25	17:15:51.00	35.142	-0.84044	6.7160	21.6066	11.7584	
18	8	2019/9/25	17:15:51.50	35,209	-0.84918	6.7382	21.6044	11.7153	
19	9	2019/9/25	17:15:52.00	35,886	-0.84734	6.7893	21.6016	11.7807	
20	10	2019/9/25	17:15:52:50	35.873	-0.84807	6.7955	21.6035	11.7184	
21	11	2019/9/25	17:15:53.00	35.385	-0.84732	6.7287	21.6005	11.7021	
22	12	2019/9/25	17:15:53:50	35.950	-0.84161	6.7222	21.6055	11.7275	
14 4	H 1908	25171548/				٠ [

■「LE-LINK91 (ver 1.00)」で保存されるログファイル 「ログ設定」で設定した保存場所にログファイルが作成されます。 最初の測定データ時刻の "年月日_時分秒"のファイル名で作成されます。 (例「190529 113431.csv」2019 年 5 月 29 日 11 時 34 分 31 秒)

■「LE-LINK91(ver 1.10 以降)」で保存されるログファイル

「ログ設定」で設定した保存場所にログファイルが作成されます。 最初の測定データ時刻の"年月日_時分秒_ファイル番号"のファイル名で作成されます。 ログファイル1つあたりの測定データの上限は100万点で、上限を超えた場合は新しいログファイル を作成して測定を継続します。 継続ログファイル数の上限は1000個(000 ~ 999)までで超えた場合は LE-LINK91 での測定を停止し ます。 (例「200717 134405 000」 2020年7月17日13時44分5秒の先頭のログファイル)

■本体の SD カードに保存されるログファイル

ログファイル収集機能が無効の場合(初期の設定) SD カードに保存されるログファイルは「LE-9XX」フォルダ内に測定を開始した時点の日付名フォル ダに "測定開始時間+連番"ファイル名で作成されます。 ログファイル 1 つあたりのサイズ上限は 200Mbyte で、上限を超えた場合は新しいログファイルを作成 して測定を継続します。継続ログファイル数の上限は 100 個までで超えた場合は測定を停止します。 例) SD カードルート

└LE-9XX ├── 20190529 ······ 2019 年 5 月 29 日

→ 11343100.CSV ········· 11 時 34 分 31 秒に測定を開始

11343101.CSV ……… ファイルサイズ上限に到達し、新しいファイルを作成

└── 06550100.CSV ········ 6 時 55 分 01 秒に測定を開始

<u>ログファイル収集機能が有効の場合</u>

SD カードに保存されるファイルの構成が通常時とは異なります。 詳細は「5-4. ログファイル収集機能」を参照してください。

■ 参考

ログファイルをエクセルなどで開く場合、「時間」に秒未満の数値(1/100秒単位)が含まれている ため値が全て表示されない場合があります。セルの書式設定のユーザー定義にて "h:mm:ss.00"を指 定して表示してください。

4-1. 各部の説明

■ メイン画面

LE-LINK91を起動するとメイン画面が表示されます。

■ 接続設定

計測器との接続方法を選択します。 「接続設定」ボタンをクリックすると表示され、設定後に「OK」ボタンを押してください。

<接続方法に USB を選択>

計測器とPCをUSB ケーブルで接続する場合に選択してください。

接続設定		
接続方法:	USB	
シリアルボート:	LE-910R [S/N:99999999] (COM3)	
	OK キャンセル	

シリアルポート:計測器が接続されている COM 番号を選択します。

<接続方法にWi-Fiを選択>

計測器とPCを無線 LAN(Wi-Fi)で接続する場合に選択してください。

接続設定		×
接続方法:	Wi-Fi 💌	
IPアドレス:	192 . 168 . 4 . 1	
ポート番号:	10101	
	のK キャンセル	

| P アドレス : 計測器に設定されている IP アドレスを入力します。 ポート番号 : 計測器に設定されているポート番号を入力します。 ※予め本体に無線 LAN 設定を行ってください。→「2-4. 無線 LAN (Wi-Fi)の設定」

■ 測定設定

計測器の測定設定を行います。

「測定設定」をクリックすると表示され、計測器と接続中のみ設定できます。 左側のツリーメニューから設定項目を選択すると、右側に各設定が表示されます。設定後に「適用」 ボタンを押すと本体に保存されます。「キャンセル」ボタンを押すと本体に保存されません。

<測定設定>

制定設定			×
 一項定設定 ⇒ チャンネル設定 → 4.12 → 4.13 → 4.14 → 4.15 → 7.7 ログトリガー設定 → 7.7 ログトリガー設定 → 時前設定 	- 新定款室 A/Dコンパータ サンブリングレート 外部トリガー 海定際系 測定 キャンキル税 アナログ財産後の変新周期	[10[son]]0FF [[[son] 全て 527.50 [meec]	v v
	進用	キャンセル	

A/D コンバータ サンプリングレート:

内蔵 AD コンバータの1秒間当たりの AD 変換回数(単位 sps)を選択します。 本機は入力チャンネルを順番に切り替えて、1つの AD コンバータで AD 変換するため、各ア ナログ入力チャンネルの更新に以下の時間がかかります。

(AD 変換時間+チャンネル切り替え時間 5m 秒) × 測定チャンネル数 測定チャンネル数を5チャンネルで10[sps]で測定する場合は、

(100.5m 秒+5m 秒) ×5=527.5m 秒毎に各チャンネルのアナログ測定値が更新されます。 これより早い測定間隔でアナログ測定値を転送しても、前回と同じ値が読み出されます。 下表のアナログ測定値の更新周期が、測定間隔より短くなるように A/D コンパータサンプリ ングレートを選択してください。

Α/	D	コンノ	バータ	サンフ	プリン	グレー	トの表
----	---	-----	-----	-----	-----	-----	-----

A/D コンバータ	AD 変換時間	アナログ測定値の更新周期 [m 秒 / チャンネル]							
サンプリングレート	[m 秒]	測定チャンネル数							
[sps]		1	2	3	4	5	6	7	8
10	100.5	105.5	211	316.5	422	527.5	633	738.5	844
16.6	60.6	65.6	131.2	196.8	262.4	328	393.6	459.2	524.8
50	20.6	25.6	51.2	76.8	102.4	128	153.6	179.2	204.8
60	17.2	22.2	44.4	66.6	88.8	111	133.2	155.4	177.6
400	3.05	8.05	16.1	24.15	32.2	40.25	48.3	56.35	64.4
1200	1.35	6.35	12.7	19.05	25.4	31.75	38.1	44.45	50.8
3600	0.76	5.76	11.52	17.28	23.04	28.8	34.56	40.32	46.08
14400	0.54	5.54	11.08	16.62	22.16	27.7	33.24	38.78	44.32

※ 熱電対測定中には、上記に加えて最大 1m 秒 / チャンネル 更新周期が遅くなります。

電源周波数が 50Hz/60Hz の使用環境では、初期値の 10[sps] が最も電源ノイズに影響され ない測定設定です。設定を変更する際は電源周波数 50Hz の使用環境では 50[sps] が、電 源周波数 60Hz の使用環境では 60[sps] が電源ノイズに影響されにくいことを考慮して変更し てください。

外部トリガー:

有効にすると外部信号を使用した測定ができます。(LE-910Rのみ) 外部トリガー機能の詳細は「5-1.外部信号をトリガーに使用した測定」を参照してください。 同期測定モードの詳細は「5-2.同期測定モード」を参照してください。

トリガー設定	内容
OFF	測定間隔で設定した周期で測定します。
外部信号(立ち下がり)	外部信号の立ち下がり時に測定します。
外部信号(立ち上がり)	外部信号の立ち上がり時に測定します。
同期モード(マスター)	同期測定モードのマスターとして同作します。
同期モード(スレーブ)	同期測定モードのスレーブとして同作します。

※ 同期モードを選択するには LE-LINK91 ver1.10 以降が必要です。

測定間隔:

アナログ測定の周期(最小10m秒~最大60分)を選択します。測定値を測定ソフトへ転送、 本体SDカードへ記録する周期となります。「外部トリガー」にOFF 以外が設定されている場 合はこの設定は使用されません。

- ※ご利用の Wi-Fi ネットワーク環境によっては、サンプリング周期が早い時などにパソコン側 で測定データを取りこぼす場合があります。
- ※オプションの SDHC カードの使用を推奨。一部市販の SD カードには SD カードへの書き込み時間が長いものがあり、サンプリング周期が早い時などに測定データの記録が間に合わずを取りこぼす場合があります。
- ※ 50m 秒~ 200m 秒を選択するには LE-910R は本体 ver1.04 以降、LE-LINK91 ver1.10 以 降が必要です。
- ※ 10m 秒、20m 秒を選択するには LE-910R は本体 Ver1.08 以降、LE-LINK91 Ver1.20 以 降が必要です。

測定チャンネル数:

測定に使用する AI チャンネルを設定します。

- 指定した AI 端子のみを指定して測定するので、より高速な測定ができます。
- 使用していないチャンネルでは測定が停止します。
- ※ LE-910R は本体 Ver1.08 以降が必要です。
- ※ LE-LINK91 は Ver1.20 以降が必要です。

設定例)

測定間隔を 10m 秒で測定したい場合

A/D コンバータサンプリングレートを 400sps 以上、測定チャンネル数を Al1 のみに設定す ることで測定できます。

測定間隔を 500m 秒かつ、A/D コンバータサンプリングレートを 10sps で測定したい場合 測定チャンネル数を A11 ~ A14 に指定することで測定できます。

アナログ測定値の更新周期:

各チャンネルのアナログ測定値が更新される時間が表示されます。 選択されている A/D コンバータ サンプリングレートと測定チャンネル数から自動的に計算され ます。

ここに表示されている時間より長い測定間隔を選択してください。

<チャンネル設定>

チャンネル毎に設定します。ツリーメニューから AI1 ~ 8 を選択すると設定が表示されます。 熱電対に関する設定はレンジに熱電対を選択した場合に表示されます。

和電子I(C) ・ -00.00 ~ [10.00] (C)) [タイプ ・ の (C) 第二項 (C) (C) (C) (C) (C) (C) (C) (C)

名前:

名前を付けるとグラフおよびチャンネル一覧に表示されます。

レンジ:

アナログ入力レンジを設定します。測定対象に合わせて適切なレンジを選択してください。

レンジ	内容
± 100 [mV]	± 100 [mV] レンジで電圧を測定する時に使用します。
±1[V]	± 1 [V] レンジで電圧を測定する時に使用します。
± 10 [V]	± 10 [V] レンジで電圧を測定する時に使用します。

± 30 [V]	± 30 [V] レンジで電圧を測定する時に使用します。
0-20 [mA]	入力端子台に 250 Ωの抵抗を外付けしてセンサー等からアナログ電流信
(外付け 250 Ω)	号を測定する時に使用します。
0-20 [mA]	入力端子台に 50 Ωの抵抗を外付けしてセンサー等からアナログ電流信
(外付け 50 Ω)	号を測定する時に使用します。
熱電対[℃]	入力端子台に熱電対を接続して温度を測定する時に使用します。

スケール:

グラフの縦軸スケール表示の最大と最小を設定します。(小数点2桁まで) この設定はレンジ毎に保存されるので、レンジを変更すると連動してスケール設定が切り替 わります。測定値がスケールの範囲を超える場合、グラフ上では最大または最小側に張り付 いて表示されます。

熱電対種別:

熱電対のタイプを指定します。使用する熱電対のタイプを選択してください。

冷接点補償:

冷接点補償機能の有効/無効を設定します。(チェックありの場合に有効) 通常は有効に設定してお使いください。 氷浴等の外部補償装置を用いた高精度測定を行いたい場合、無効にすることができます。 無効に設定の場合、冷接点温度を0℃と仮定した測定温度を出力します。

断線検知:

熱電対の断線検知機能の有効/無効を設定します。(チェックありの場合に有効) 通常は、有効に設定してお使いください。補償導線の線長が非常に長く、断線検知用の徴 弱電流による測定精度悪化が気になる場合には無効にすることができますが、断線状態の 検知はできなくなります。(断線検知用印加電流は約180 nA です)

換算機能:

換算機能の有効 / 無効を設定します。(チェックありの場合に有効) センサからの電圧や電流の値を換算式に従って物理量に変換できます。

換算式:

換算機能が有効な場合のみ有効です。入力した値で測定値を換算してグラフに表示します。 換算値はグラフの表示のみに使用されログファイルには出力されません。

表示値の単位:

換算機能が有効な場合のみ有効です。 入力された単位がグラフや測定値の単位として表示されます。

<アナログトリガー設定>

AI 端子を使用した測定の開始、停止を制御するための設定をします。

- ※ LE-910R は本体 Ver1.08 以降が必要です。
- ※ LE-LINK91 は Ver1.20 以降が必要です。

□ 測定設定 日チャンネル設定	- アナログトリガー酸定 -		
-A11 -A12	条件	しきい値以上 💌	
-AI3 -AI4	チャンネル	AI1 •	
└_A15 時計設定 - 時計設定	CEVILL		
		連用 キャンセ	94

条件:

測定を開始する条件を設定します。

条件	内容
トリガー無効	アナログトリガーは機能しません。
しきい値以上	指定したチャンネルの測定値がしきい値以上になったときに測定を開始し ます。 しきい値未満になると停止します。
しきい値以下	指定したチャンネルの測定値がしきい値以下になったときに測定を開始し ます。 しきい値を超えると停止します。

チャンネル:

アナログトリガー機能に使用するチャンネルを選択してください。

しきい値:

測定を制御するためのしきい値を設定します。 入力できる値は指定したチャンネルのチャンネル設定に依存します。

< ログファイル収集機能 >

SD カードに保存されているログファイルを転送する機能の設定をします。 ログファイル収集機能の詳細は「5-4. ログファイル収集機能」を参照してください。

測定設定			×
	ログファイル収集機能		
 一州支援之 ● オンシネル設定 ● オンシネル設定 → A12 → A13 → A14 → A14 → A15 ● アクログトリガー設定 ■ ログトリガー設定 ■ ログトリガー設定 ■ ログトリガー設定 ■ ログトリガー設定 ■ ログトリガー設定 ■ ログトリガー設定 	ログファイル均衡報道 ログファイルサイズ	 [200 Коле	
	進用	キャンセル	
- AIS - アテログトリガー設定 - マラフィルズ系機能 - 時計協定	ал <i>Я</i> н	キャンセル	

ログファイル収集機能:

ログファイル転送機能の有効 / 無効を切り替えます。

ログファイルサイズ:

ログファイル収集機能が有効なときに記録されるログファイルサイズを設定します。

<時計設定>

本体内蔵時計の確認と設定をします。

	颜定
-A11 -A12 -A13	計測器本体の現在時刻を取得
	PC現在時刻支計測器本付口設定
,	(一)道用 キャンパル

計測器本体の現在時刻を取得: 本体の現在時刻をポップアップ画面に表示します。 本体時刻取得 × 計測器の現在時刻は2019/5/31 11:23:05 です。 OK

PC 現在時刻を計測器本体に設定:

PC の現在時刻を本体に設定し、設定した時刻をポップアップ画面に表示します。

本体時刻設定	×
計測器に現在時刻(2019/5/31 11:23:45)を設定しました。	
OK	

■ ログ設定

ログに関する設定を行います。

「ログ設定」ボタンかファイルメニューの「ログ設定」を押すと表示され、設定後に「OK」ボタンを 押してください。

ログ設定	×
「ログファイルの保存先」	
変更 開く C:¥Users¥le¥Desktop¥LINEEYE¥LE-910¥Data	
▶ 測定開始時に本体SDカードへ記録を開始する	
0K キャンセル	

ログファイルの保存先:

測定データを保存する場所を指定します。未設定の場合は「LE-LINK91」の実行ファイルと同じ場 所となります。「変更」ボタンで保存先を変更できます。「開く」ボタンで保存先のフォルダを開きます。

測定開始時に本体 SD カードへ記録を開始する:

チェックすると、本体に SD カードが挿入されている場合、SD カードへの記録も開始されます。 (SD カードが挿入されていない場合は記録されません)

■ グラフエリア

AI1 ~ 8 の測定値をグラフで表示します。約1秒周期で更新されます。測定開始直後はグラフは左 からプロットされ、右端に到達するとグラフを左側にシフトしながら表示します。 測定の対象でない AI端子のグラフは表示されません。

<横軸(時刻)>

測定時刻を表し、最も右に表示されている測定値が最新となります。

「表示期間」を超える測定値はグラフをスクロールすることで表示できます。表示期間に対して測 定データ数が多い場合、測定データから代表値を選択してグラフ表示するため、急激な測定値の 変化が描画されない可能性があります。詳細な測定値を確認する場合はログファイルで確認してく ださい。

グラフ表示領域にマウスカーソルを重ねると、グラフ上部にマウスカーソルの座標に相当する値を 表示します。実際に記録された測定値を示すものではございませんので、あくまでも目安としてご 利用ください。

<縦軸(測定値)>

測定したアナログ値を設定されているスケールの範囲で表示します。換算機能が有効な場合、スケー ルも換算後の値で表示されます。測定値が範囲外の場合は最小・最大側に張り付いて表示されます。 軸に表示される数値ラベルは選択されているチャンネルの設定が表示されます。

■ チャンネル一覧

All ~ 8のチャンネル設定が表示されます。クリックした場所のチャンネルが選択状態になります。 測定の対象でない Al 端子は表示されません。

表示	Ch	名前	測定値	レンジ	スケール
v	Al1	装置A	-2.1837 [V]	±10[V]	-10.00 ~ 10.00 [V]
✓	Al2	装置B	0.64943 [V]	±1[V]	-1.00 ~ 1.00 [V]
✓	AI3		0.0012 [V]	±10[V]	-10.00 ~ 10.00 [V]
✓	Al4		0.0022 [V]	±30[V]	-30.00 ~ 30.00 [V]
✓	AI5		0.0049 [mA]	4-20[mA](250Ω)	0.00 ~ 20.00 [mA]

<チャンネルの選択>

選択されたチャンネルのグラフが最前面に表示されます。グラフエリア左上に表示される名前も選 択中のチャンネルの名前になります。 <グラフの表示 / 非表示>

表示が有効なチャンネルのグラフのみ表示されます。表示 / 非表示の切り替えはチャンネル一覧 の表示チェックボックスで操作します。

<表示>

All ~8のグラフ表示 / 非表示状態と、対応するグラフ色が表示されます。チェックボックスをクリッ クすることでグラフの表示状態を切り替えることが出来ます。 測定に使用していないチャンネルを非表示することでグラフが見やすくなります。

<名前>

チャンネルの名前が表示されます。測定設定から変更できます。

→「4-1. 各部の説明の 測定設定」

<測定値>

最新の測定値が表示されます。(有効数字6桁)

例えば、レンジが± 10[V] なら-10.0000[V] ~ 10.0000[V]

レンジが± 100[mV] なら-100.000[mV] ~ 100.000[mV]

レンジが電流 (250 Ω外付け)なら、0.0000[mA] ~ 20.0000[mA]

熱電対レンジの場合は 0.1[°C]単位で表示されます。断線検知を有効にしている場合は、断線時 に測定値の代わりに「BO」が表示されます。

換算機能が有効な場合は換算後の値が表示されます。

<レンジ>

測定レンジが表示されます。測定設定から変更できます。→「4-1. 各部の説明の 測定設定」

<スケール>

グラフエリアに表示する測定値の範囲設定が表示されます。グラフはこの範囲内の測定値を表示 します。範囲外の測定は最小または最大値側に張り付いて表示されます。測定設定から変更でき ます。→「4-1. 各部の説明の測定設定」 メニューから「ファイル」、「ログファイルを開く」をクリックし、開きたいログファイル (CSV ファイル)を選 択します。

読み込んだログファイルは新しいウィンドウにグラフ表示されます。

<ログファイルパス>

ログファイルのフルパスがウィンドウ上部に表示されます。

<測定期間>

測定開始、終了時刻が表示されます。

■ その他の項目

表示される測定設定はログファイルに保存された設定をもとに表示されます。 各項目の見方は「4-2.グラフの見方」と同様です。

5-1. 外部信号をトリガーに使用した測定

外部信号の立ち上がり、または立ち下がりで Al1 ~ 5 のアナログ値を測定する機能です。測定のタイミ ングを外部から制御したい場合に利用できます。 測定間隔の最小は 10m 秒です。これより短い間隔の外部信号を入力しても無視されます。 LE-910R で利用できます。

■ 接続方法

外部トリガー入出力端子に外部信号を接続します。

ピン	信号名	機能
1,3	S	外部信号入力 TTL レベル入力 入力範囲:-0.5V ~ 6.0V、10kΩ プルアップ
2,4	G	信号グランド

※ ①と③、②と④は計測器内部で接続されています。
 ※ 接続にはピッチ: 2.54mm の QI (2550) ソケットが使用できます。

■ 設定方法

「測定設定」の「外部トリガー」から「外部信号(立ち上がり)」または「外部信号(立ち下がり)」 を選択してください。→「4-1. 各部の説明 の 測定設定」 測定の開始と停止は通常と同じ方法です。測定開始後は外部信号入力の変化で測定します。

5-2. 同期測定モード

複数台の LE-910R で同期を取りながら測定する機能です。5 チャンネルを超える測定をする場合に利用 できます。1 台をマスター、3 台をスレーブとすることで最大 20 チャンネルの測定ができます。 LE-910R で利用できます。

■ 動作

- 測定の開始と停止はマスターとなる測定器を操作します。スレーブとなる計測器では測定開始・停止の操作はできません。スレーブはマスターに合わせて自動的に開始・停止します。
- ・ 測定はマスターの測定間隔で行い、スレーブはマスターと同じ測定タイミングになるよう同期して測定 を行います。
- ・マスターとなる計測器の POWER LED が赤で点灯し、スレーブは POWER LED が橙で点灯します。

■ 接続方法

同期測定モードを利用する場合は LE-910R 間を外部トリガー入出力端子で接続します。 マスターとスレーブ、スレーブとスレーブの同期信号と信号グランドを下図のように接続してください。

マスタース		ミレーブ 1	スレ-	ーブ 2		スレ-	ーブ 3
3 1		3 1 -	-3	1		- 3	1
4 2		4 2 +	-4	2		- ④	2
ピン 信号名			機能]		
1,3	S	同期信号入出力					
2,4	G	信号グランド					

※ 接続にはピッチ: 2.54mm の QI (2550) ソケットが使用できます。

■ 設定方法

「測定設定」の「外部トリガー」から「同期モード(マスター)」または「同期モード(スレーブ)」を 選択してください。

→「4-1. 各部の説明の測定設定」

■ 測定データについて

< 「LE-LINK91」で測定するとき> 接続される LE-910R の測定データのみログファイルが作成されます。 同期測定モードで測定した他の LE-910R のログファイルの同じシーケンス番号の測定データが同じ タイミングで測定したデータを表します。

<本体の SD カードに記録するとき>

通常の測定と同様に本体の SD カードにログファイルが作成されます。同じシーケンス番号の測定 データが同じタイミングで測定したデータを表します。

タイムスタンプはそれぞれの本体の時計を使用するので、同時刻に測定を開始した場合でもログファ イル名や測定データのタイムスタンプは一致しない場合があります。

5-3. アナログトリガー機能

アナログ測定値を条件にして測定の開始・停止を制御する機能です。

例えば、センサが出力する電圧が指定値以上のときだけ測定・記録したい場合などに利用できます。

- ※ LE-910R は本体 Ver1.08 以降が必要です。
- ※ 同期測定モード (スレーブ) が設定されているときは無効になります。
- ※ ログファイルの作成などの処理後に測定を開始するため、しきい値が一致してから数秒程度経過してから測定が開始されます。
- ※ しきい値の判定は設定した測定間隔とは異なるタイミングで行われるため、瞬間的に変化するような 信号ではトリガーできない場合があります。

■ 設定方法

「アナログトリガー設定」で機能を有効にしてください。 使用するチャンネルとトリガーの条件、しきい値を設定してください。

→ 「4-1. 各部の説明のアナログトリガー設定」

■ 動作

指定チャンネルの測定値が指定した条件に一致すると測定を開始します。 その後、条件から外れると測定を停止します。

ての後、未什からクトイレると則定を停止します。

アナログトリガー機能が有効な場合でも本体スイッチ・LE-LINK91・制御コマンドを使って測定の開始・ 停止ができます。

アナログトリガー機能により測定開始したあと、その他の操作で測定停止した場合は次のアナログトリ ガーの条件に一致するまで測定は停止します。

5-4. ログファイル収集機能

LE-910Rシリーズ本体のSDカードに保存されているログファイルをUSBまたはWi-Fiで転送する機能です。 本体が遠隔地にある場合でも過去のログファイルを取得することができます。

ログファイルの転送には PC ソフトウェアの LE-900 ログファイルダウンローダーを使用する他、制御コマンドでご利用になれます。

※ LE-910R は本体 Ver1.08 以降が必要です。

■ LE-900 ログファイルダウンローダー

接続方法 COMボート: © USB © Wi-Fi LE-910R [S/N:585	更新 205003] (COM3)	接続 切断
保存先:		
ログファイル選択		
日付: 2023/01/26 <u>-</u> 時刻: 18:11:56 <u>-</u>	00000018.csv 00000019.csv 00000020.csv 00000021.csv 00000022.csv	すべて選択 更新
00000026.csv をダウンロード中	00000023.esv 00000024.esv 00000025.esv	ログ設定
	00000027.cev	タワンロード

ログファイルの転送を行う PC ソフトウェアです。 付属 CD にも収録されています。 "le900_filedownloader"フォルダを PC にコピーし、フォルダ内の le900_filedownloader.exe を実行する と起動します。

本体に USB または Wi-Fi で接続できます。 接続すると本体の SD カードに記録されているログファイルの一覧が表示されます。 日付、時刻を選択するとログファイルの一覧が更新されます。

ログファイルの一覧から PC に転送したいファイル名を選択して「ダウンロード」ボタンをクリックすると、 ログファイルの転送を開始します。(ログファイルは複数選択することができます) 転送中は画面に進捗状況が表示されます。中断したい場合は、「中断」ボタンをクリックしてください。

転送されたログファイルは「保存先」で表示されているフォルダに保存されます。必要なら「変更」 ボタンをクリックして変更してください。

■ 設定方法

ログファイルを転送するにはログファイル収集機能が有効になっている必要があります。機能が無効 な状態で記録されたログファイルは転送できません。 機能を有効にするには次のいずれかの方法で設定します。機能が有効な場合に、ログファイルのフォ ルダ構成が転送に適した形式に切り替わります。

ログファイルサイズの上限を変更して1ファイルあたりの計測時間を延長することができます。 ファイルサイズを大きくすると転送時間が長くなりますのでご注意ください。初期設定値の 200Kbyte のログファイルの転送には 30 秒程度必要です。

・LE-LIN91の場合

「測定設定」の「ログファイル収集機能」から「有効」を選択してください。 ログファイルのサイズを変更する場合は「ログファイルサイズ」を設定してください。 →「4-1.各部の説明のログファイル収集機能」 LE-900 ログファイルダウンローダーの場合
 LE-900 ログファイルダウンローダーで本体と接続し、「ログ設定」から「ログファイル収集機能を使用する」にチェックを入れてください。
 ログファイルのサイズを変更する場合は「ログファイルサイズ」を設定してください。

▶ ログファイル収集機能を	吏用する
ログファイルサイズ:	200 Kbyte
(10 -	204800)
OK	キャンセル

■ フォルダ・ファイルの構成

SD カード内のログファイル保存場所は「LE-9XX」フォルダの「測定を開始時点の日付名」→「時刻名」 フォルダ内になります。

「時刻名」フォルダ内に0から始まる8桁の連続する番号のファイル名でログファイルが作成されます。 ログファイル1つあたりのサイズ上限は200kbyte(初期設定値)です。この上限を超える場合は連 番を一つ繰り上げた新しいログファイルを作成して測定を継続します。また、時刻フォルダ内のログファ イル数が上限となる200個を超えた場合は測定を停止します。

例)

SD カードルート

└ LE-9XX

6-1.制御コマンド

LE-910R シリーズはコマンドを利用して制御することができます。コマンドを利用することで独自のアナロ グ信号測定アプリケーションが作成できます。 コマンドの詳細は付属 CD にある「LE-910R シリーズ」制御コマンド仕様説明書」を参照してください。

6-2. ファームウェアの更新

パソコンと USB ケーブルで接続し、ファームウェア更新ツールを使用することで LE-910R シリーズ本体 のファームウェアを最新の状態に更新することができます。 バージョンアップの方法はラインアイのホームページからダウンロードできるファームウェア更新ツール

「LE-900firm」に同梱されている Readme をご覧ください。

6-3. 出荷時の設定に戻すには

本機を工場出荷の設定状態に戻すには、本機の RUN/STOP スイッチを押しながら電源を入れ、全ての LED が赤点灯から赤点滅するまで(15 秒以上)押し続けます。 全ての LED が赤点滅しだしたら、RUN/STOP スイッチを押すのを止めると工場出荷の設定状態に戻りま

す。測定設定や Wi-Fi 設定を消去したい場合などに利用してください。

<u>6-4. オプション</u>

18000 2232 75 円志 240		
名称	型番	説明
32GB SDHC カード	SD-32GX	32G バイト Class10
アナログ計測器用 DIN 取 付プレート	LE-DIN13S	35mmDIN レールに取り付けるときに利用します。
ワイド入力 AC アダプタ	6A-181WP09	定格入力:AC100 ~ 240V、50/60Hz 定格出力:DC9V、2A プラグ:センタープラス、外径5.5mm、内径2.1mm 適合規格:PSE/UL/CUL/FCC/CCC/CE 動作温度:0~40℃
ワイド入力 AC アダプタ (広温度範囲用)	SUL318-0920	定格入力:AC100 ~ 240V、50/60Hz 定格出力:DC9V、1.45A プラグ:センタープラス、外径 5.5mm、内径 2.1mm 適合規格:PSE 動作温度:-20 ~ 60°C
電源プラグケーブル	SIH-2PG	DC プラグ (外径 5.5mm、内径 2.1mm) ⇔ Y 端子 1.8m 外部 DC 電源を DC-IN 端子に供給するときに利用します。 (ケーブルクランプ付属)
電流測定用抵抗 250 Ω	LA- SM10250RB	アナログ入力で電流の測定を行なう際に利用します。 抵抗:250Ω、許容誤差:±0.1%、電力:0.3W
ミニ USB ケーブル	SI-US218	A-miniB タイプの USB ケーブル (1.8m)
5.08mm ピッチ端子台 10 極	LA-10ETB41	着脱式端子台コネクタ。予備または交換用です。 適合機種:LE-910R
5.08mm ピッチ スクリューレス端子台 10 極	LA-10ETB61	ねじ止めなしで結線できるスクリューレス端子台です。 適合電線:AWG24 ~ 12、電線被覆剥きしろ 9mm 適合機種:LE-910R
3.81mm ピッチ端子台 8 極	LA-8ETB45	着脱式端子台コネクタ。予備または交換用です。 適合機種:LE-918R
K タイプ熱電対 (ミニチュアコネクタ付き)	LE-KTMC-3	被覆:フッ素樹脂、素線径: ∲ 0.32、長さ: 3m 許容差: クラス 1 使用温度範囲: -40 ~ 200℃ (コネクタ部 -29 ~ 180℃)
K タイプ熱電対用 ミニチュアコネクタケーブル	LE-KFC1	K 熱電対用のコネクタ変換ケーブル ミニチュアコネクタ (メス) ⇔棒端子 長さ:10cm、端子長:8mm

価格、入手方法などは販売店または当社営業部までお問い合わせください。

- 7-1. 故障かなと思ったら
 - ■「POWER」LED が点灯しない

'	POWER」LED が 点灯 しない			
ĺ	< USB ケーブル使用時>	お使いの PC によっては供給電力が不足する場合がありま		
	USB ポートの供給電力が不足してい	す。バスパワーで動作している他の機器を取り外すなどして		
	ませんか?	ください。または AC アダプタを使用してください。		
	< AC アダプタ使用時> AC アダプタの接続不良はないです か?	AC アダプタジャックの接続、コンセントへの差込状態などを 確認してください。		

■本体 SD カードに記録できない

SD カードが正しく挿入されています	SD カードを「カチッ」と音がするまで奥まで差し込んでくださ
か?	い。
ライトプロテクトスイッチが ON になって	SD カードの側面にあるライトプロテクトスイッチを OFF にして
いませんか?	ください。
SD カードの空き容量が不足していま	SD カードの空き容量を確保してください。
せんか?	
FAT/FAT32 でフォーマットされていま	FAT/FAT32 でフォーマットしてください。
すか?	

■ 計測器に接続ができない

< USB 接続時 >	
USB ドライバーがインストールされて	付属 CD にある USB ドライバーをインストールしてください。
いますか?	
< Wi-Fi 接続時 >	
	Wi-Fi の接続設定や IP アドレスなどを再確認してください。
Wi-Fi 設定は正しいですか?	計測器と測定ソフトの設定を確認して同じポート番号に合わ
	せてください。
セキュリテックトを利用 ています	ファイアウォール機能を一時的に無効にして試してください。
してエリアイノンドを利用していよう	接続できた時は、本機の通信を遮断しないようにセキュリティ
21.5	ソフトの設定を見直してください。
	PC の IP アドレスが本機と同じネットワークグループになって
PC は本機と同じネットワークに接続さ	いるか確認してください。外部ネットワークから接続している
れていますか?	時はルータ等が正しく設定されているかをネットワーク管理者
	に確認してください。

■ Wi-Fi 接続が切れる

周辺に多くの無線アクセスポイント (AP) が設置された場所で利用してい ませんか?	電波強度の強い他の AP が近くにあると電波干渉により送受 信の遅延が大きくなり、タイムアウトにより接続が切れること があります。AP の位置を変えるか、AP の無線チャンネル を変更してみてください。
輻射ノイズの発生源はありませんか?	大型モーターや基板が露出した試作器などが近くにある時は 一度それらの機器から離してみてください。
AP までの距離は適切ですか?	周囲の電波環境により接続可能距離が非常に短くなることが あります。接続テストを行い、AP との距離は可能なかぎり 近づけてください。

■ アナログ測定の値が正しくない

端子台が正しく接続されていますか?	端子台と測定対象は適合する電線で接続し、着脱式端子台 は奥までしっかり差し込んでください。
測定設定が正しいですか?	測定対象にあわせて適切な測定レンジを設定してください。 熱電対を使用する場合は熱電対の設定もしてください。
電流測定用の外付け抵抗が接続され ていますか?	電流の測定時は外付け抵抗を接続してください。

7-2. 保証とアフターサービス

- ◆ この製品には保証書が添付されていますので、お買い上げの際お受け取りください。
- ◆ 所定の事項の記入および記載内容をお確かめのうえ、大切に保存してください。
- ◆ 保証期間は、お買い上げ日より1年間です。
- ◆ 保証期間中の修理は、保証書の記載内容にもとづいて修理させていただきます。 詳しくは保証書をご覧ください。
- ◆ 保証期間経過後の修理は、修理によって機能が維持できる場合、ご要望により、有償修理させていただきます。

修理についてご相談になるときは、型名、製造番号、故障の状態(できるだけ詳しく)、購入年月日 をお知らせください。

= = = = = ユーザー登録のお願い = = = = = バージョンアップ案内やお問合せサポートの円滑化のため、 ホームページのユーザ登録ページまたは製品同梱のハガキで ユーザー登録をお願いします。

株式会社 ラインアイ

〒601-8468 京都府京都市南区唐橋西平垣町39-1 丸福ビル4F tel:075(693)0161 fax:075(693)0163

URL https://www.lineeye.co.jp Email :info@lineeye.co.jp

Printed In Japan

M-53910RJ/LE